
Facts / puzzle

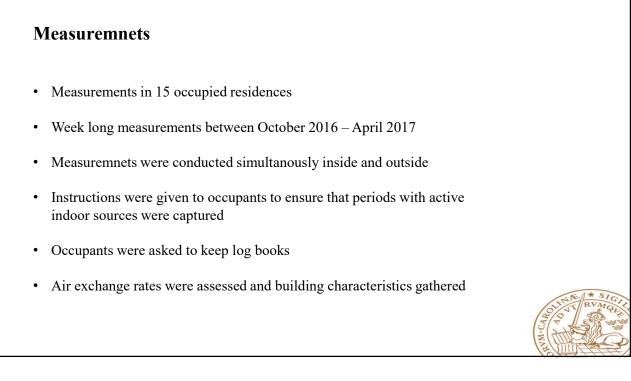
- Epidemiological studies strong correlation between particle mass concentration and health effects
- Tox studies strong evidence for UFP toxicity
- In indoor environments powerful indoor sources contribute to high UFP number concentrations....
- We spend majority of the time indoors

In epidemiological studies assessing health effects of exposure to airborne particles, indoor environments are considered as places where people are exposed to particles of outdoor origin.

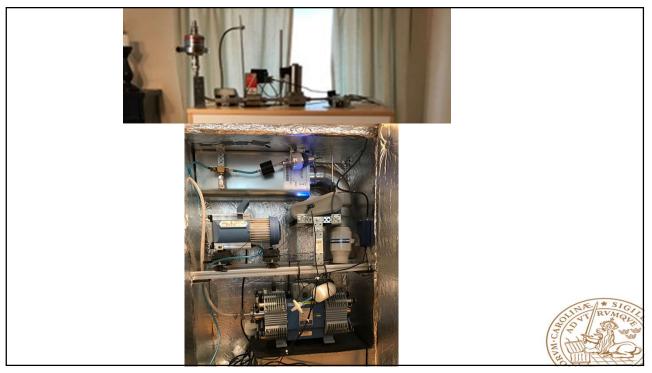
Should it remain this way?

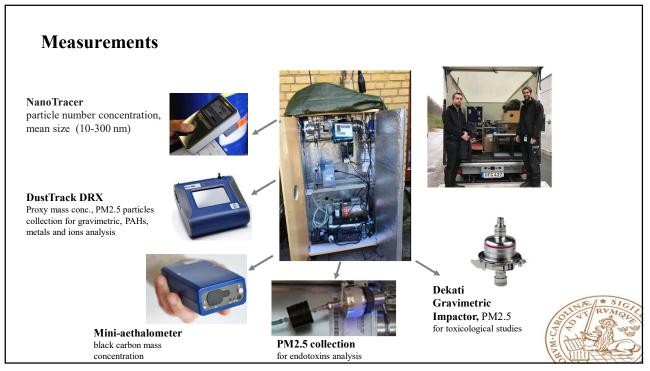
Toxicity of indoor particles?

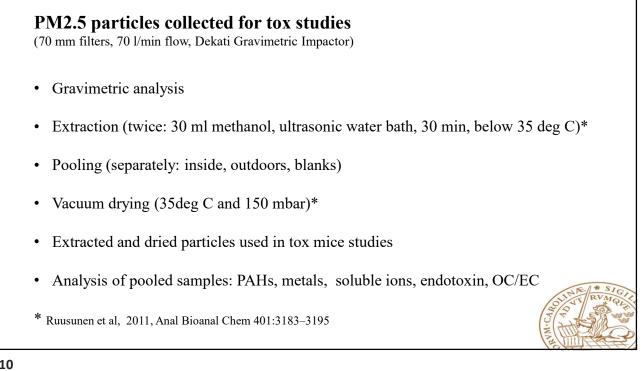
- Particles collected indoors had higher cytotoxic effects on mouse macrophages than particles collected outside one single family house in Finland (Happo et. al., 2013, 2014)
- Long et al, 2001 proinflamatory response (bioassays rat alveolar macrophages) higher for indoor particles than outdoor particles (14 paired samples in Boston area)
- Oeder et al., 2012 indoor PM10 from school compared with outdoor PM10 induced more inflammatory and allergic reactions, and accelerated blood coagulations
- Skovmand et al., 2017 candle light particles caused higher inflammation and cytotoxicity in the mice lungs (after intratracheal instillation) than diesel exhaust particles

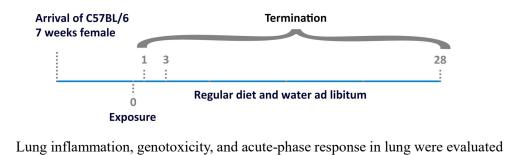


Aims


- 1. To determine differences in toxicity of particles inside and outside occupied residences by conducting toxicological studies in mice
- 2. To assess physico-chemical properties of airborne particles inside and outside occupied residences in Sweden


Wierzbicka et al, 2022, Indoor Air, 32:e13177

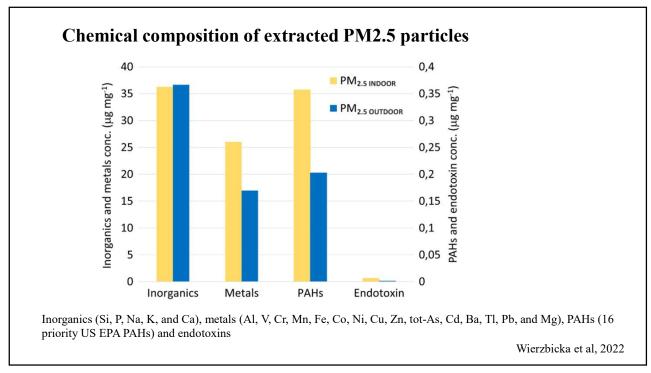


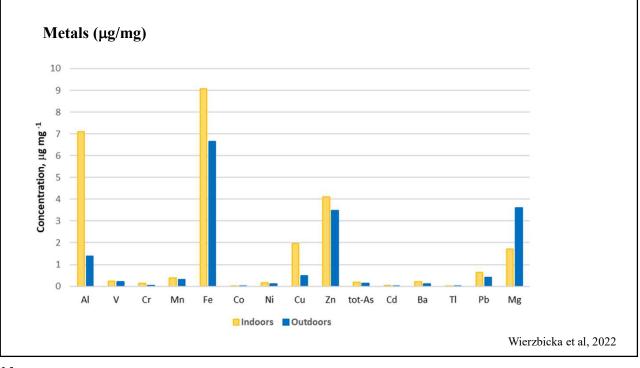


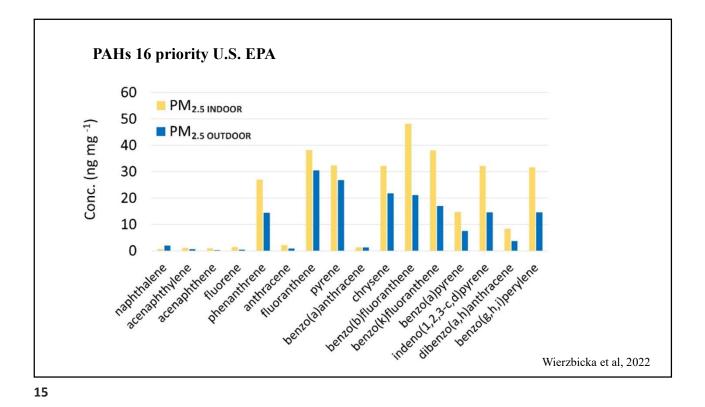
Toxicological testing in mice

Female C57BL (N=162 mice, in each group 6 mice per dose)

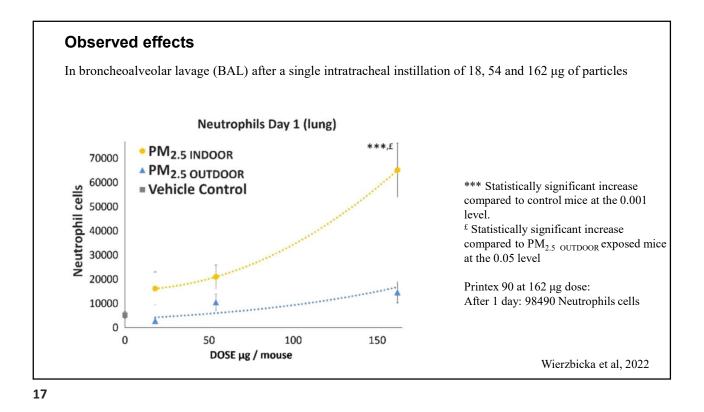
Mice received a single intratracheal instillation of 18, 54 and 162 μg of the pooled particle samples. Suspended in NanoPure water with 0.1% Tween80

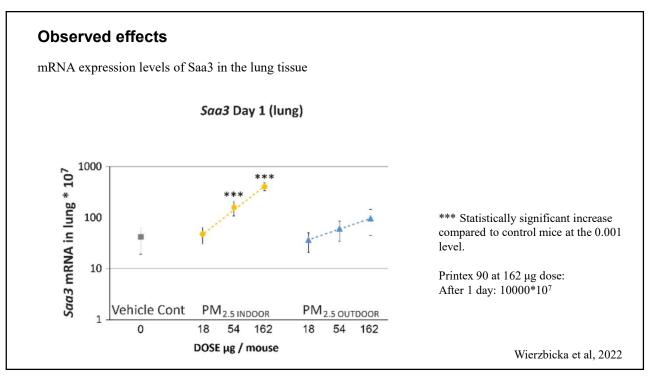

Carbon Black Printex 90/XE-2B was used as a positive control


1, 3 and 28 days after intratracheal instillation.



Home No.	Apartment/ house	Floor area (m ²)	Volume (m ³)	Type of ventilation	AER (h ⁻¹)	Number of residents	Occupancy (%
1	House	285	645	Natural ^a	0.56 ^c	3	84
2	Apartment	85	212	FTX	1.18 ^c	2	79
3	House	250	625	Natural ^a	0.39 ^c	7	76
4	House	110	275	Natural ^a	0.57 ^c	4	91
5	Apartment	117	322	Natural ^a	0.52 ^c	4	99
6	Apartment	66	164	Mechanical ^b	0.50 ^d	1	-
7	Apartment	66	164	Mechanical ^b	0.59 ^d	2	84
8	Apartment	86	215	Mechanical ^b	0.31 ^d	2	85
9	Apartment	66	164	Mechanical ^b	1.60 ^c	3	77
10	Apartment	66	164	Mechanical ^b	0.40 ^d	1	94
11	Apartment	86	215	Mechanical ^b	0.41 ^d	1	-
12	Apartment	87	218	Mechanical ^b	0.31 ^d	4	
13	Apartment	46	115	Mechanical ^b	0.51 ^d	1	64
14	Apartment	80	200	FTX	0.85 ^c	4	73
15	Apartment	46	115	Mechanical ^b	0.64 ^d	3	94



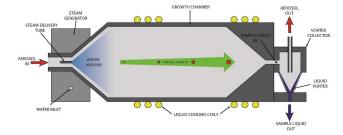


Endotoxins				
	Indo	ors	Out	tdoors
	ng/m ³	ng/mg	ng/m ³	ng/mg
Individual filters				
Average	0.29	42.6	0.08	11.4
Range (min - max)	0.06 - 0.69	1.7 - 118.9	0.03 - 0.19	0.8 - 23.1
Ratio I/O	3.6	3.7		
Extracted from filters,				
used for tox studies				
Pooled filters		6.3		1.3
Ratio I/O		4.8		

M. CANON M. CAN

Suggested limit value in occupational env: 90 EU/m³ (ca 9 ng/m³), 2011 Arbetsmiljöverket, The Nordic Expert Group

Conclusions


- Higher concentrations of metals, PAHs and endotoxins were observed indoors than outdoors
- PM_{2.5} indoors caused significantly higher lung inflammation and lung acute- phase response 1 day post-exposure compared to PM_{2.5} outdoors
- None of the tested materials caused genotoxicity.
- PM_{2.5} indoors displayed higher relative toxicity than PM2.5 outdoors under the studied conditions: wintertime with reduced air exchange rates, high influence of indoor sources, and relatively low outdoor concentrations
- Reducing exposure indoors requires reduction of both infiltration from outdoors and indoor-generated particles

Wierzbicka et al, 2022

19

Future outlook

- More studies on toxicity of particles are needed
- Is assessment Reactive Oxygen Species (ROS) a way forward? Pre-screening of toxicity and/or possible alternative health relevant PM metric?
- We have built, in cooperation with scientists from Quensland Univerity of Technology (Australia), an instrument to measure ROS in real time and assess ROS off-line. We invite all to cooperation

Brown et al ., 2019, Atmos. Meas. Tech, 12, 2387-2401

- Based on 9,10-bis (phenylethynyl) anthracene-nitroxide (BPEAnit) ROS assay,
- 1 min resolution,
- sensitivity to a broad range of ROS

Acknowledgment

This work was financed by The Swedish Research Council Formas

.№ 	Total total monitoring period					0	ccupancy til	me	Non-activity time			
	Indoors		Outdoors		_ I/O ratio	Indoors	Outdoors	I/O ratio	Indoors	Outdoors	– I/O ratio	
	Average	SD	Average	SD	- 1/0 Tatio -	Average		- 1/0 1410	Average		- 1/0 1410	
1	11700	42100	2600	500	4.5	12300	1300	9.5	1800	1200	1.5	
2	7400	19300	3800	1400	1.9	8600	4000	2.2	3200	3300	1.0	
3	4700	9700	4300	2300	1.1	5300	4000	1.3	2000	4300	0.5	
4	10900	32400	4400	2600	2.5	11200	4400	2.5	1900	3500	0.5	
5	4300	4500	5300	4100	0.8	4300	5300	0.8	2200	3800	0.6	
6	1000	500	1800	1400	0.6	-			-			
7	8600	27300	3100	1400	2.8	9600	3000	3.2	2000	3100	0.6	
8	6300	15700	2600	1300	2.4	6800	2500	2.7	1800	2700	0.7	
9	38900	120830	1900	900	20.5	49500	1900	26.1	1600	1800	0.9	
10	13400	75800	1300	600	10.3	14200	1300	10.9	1000	1100	0.9	
11	-					-			-			
12	6400	41000	1500	1200	4.3	8200	1600	5.1	1300	1400	0.9	
13	5400	19600	1400	800	3.9	6200	1400	4.4	1200	1400	0.9	
14	2700	3800	3100	7500	0.9	2900	2700	1.1	2100	3900	0.5	
15	2500	14000	3000	15900	0.8	2600	3100	0.8	900	1700	0.5	
verage	8900		2900		4.1	10900	2800	5.4	1800	2500	0.8	
SD	9300		1400			11900	1300		600	1200		

N₂ –	Total monitoring period Indoors Outdoors					Occupancy time Indoors Outdoors			Indoors	n-activity	e and e
		SD		SD	- I/O ratio -			I/O ratio	Indoors	Outdoor	s I/O ratio
	Average	1970.144	Average		07		erage		AV	erage	
1	3.5	10.6	5.0	1.1	0.7	-			-		
2	3.2	2.2	5.3	3.3	0.6	3.2	5.6	0.6	1.0	4.6	0.2
3	3.7	4.5	5.3	6.2	0.7	4.5	4.9	0.9	2.0	6.5	0.3
4	5.2	6.2	4.4	5.0	1.2	5.2	4.4	1.2	1.7	4.1	0.4
5	6.0	13.4	6.8	6.0	0.9	6.0	6.8	0.9	2.2	6.8	0.4
6	2.3	2.3	4.0	3.6	0.6	-			-		
7	11.7	12.1	15.1	9.0	0.8	11.7	15.1	0.8	12.3	17.3	0.7
8	15.6	12.7	21.9	15.6	0.7	14.3	21.2	0.7	12.6	22.4	0.6
9	10.8	28.2	10.2	10.0	1.1	11.0	10.2	1.1	10.0	10.2	0.6
10	5.5	20.8	6.5	3.9	0.8	5.6	6.5	0.9	1.6	5.9	0.3
11	7.5	-	4.7	-	1.6	-			-		
12	5.2	3.6	5.5	4.7	0.9	7.3	5.9	1.2	5.2	5.3	1.0
13	24.3	189.2	3.7	3.7	6.6	24.3	6.3	3.9	2.7	6.5	0.4
14	2.1	1.2	5.0	3.7	0.4	2.3	5	0.5	2.0	5.0	0.4
15	5.5	5.2	6.6	20.2	0.8	5.7	6.6	0.9	1.5	4.8	0.3
verage	7.5		7.3		1.2	8.4	8.2	1.1	4.6	8.3	0.5
SD	6.0		5.0	_		6.2	5.0		4.4	5.7	

PM2.5 mass concentrations in μg m-3 $\,$ and I/O ratio $\,$